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BAYESIANS EXTENSIONS TO A BASIC MODEL OF SOFTWARE RELIABILITY
by

William S, Jewell

1. INTRODUCTION

A convenient method of surveying the problems of concern in software
réliability is to scan the articles in the August, 1979 issue of the IEEE

Transactions on Reliability (Volume R~28:3). In addition to various relia-

bility management and computer science issues, it refers to the process of
identifying and removing computer software errors through program testing.

One of the earliest and simplest models for describing the stochastic
process of error occurrence is that proposed by Jelinski and Moranda [2].
Essentially, they assume that a fixed, but unknown number of defects or "bugs"

"competing” equally and randomly for discovery, each at

in the program are
the same average, unknown rate. The objective of the analysis is to estimate
the number of undetected faults remaining in the program after a certain time
and/or failure history, or to make other performance guarantees (Littlewood,
9.

Parenthetically, we should note that many variations to this basic model
have been proposed--Littlewood and Verrall [7] [8], Goel and Okumoto [1], and
Langberg and Singpurwalla [6] analyze those competing models and show that
they can be cast in a unified framework. More recent elaborations are in
Moranda [12], Littlewood [10], and Kremer {5].

In this paper we shall stick with the basic Jelinski-Moranda (J-M) [2]
model for simplicity, and to highlight our Bayesian extensions. At first,

our paper is tutorial, following the Bayesian development of Meinhold and

Singpurwalla (M-S) [11]. However, the following important extensions are

made:
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- (a) The testing protocol is permitted to run for a fixed length of
e
:}: time--possibly, but not necessarily, coinciding with a failure
S
epoch;
::; (b) The distribution of the unknown number of defects is generalized
r-\_-
i({ from the one-parameter Poisson distribution by assuming that
-x..
.l the parameter is itself a random quantity with a Beta prior
v _‘4
: i distribution;

‘4
oy

(c) Although the calculation of the posterior distributions of the
parameters leads to complex expressions, we show that the compu-
tation of the predictive distribution for undetected errors is
straightforward:

(d) Although it is now recognized that the MLE's for reliability
growth can be very unstable, we show that, 1f a point estimator
is needed, the predictive mode is easily calculated without

obtaining the full distribution first,

The paper concludes with a numerical example.
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2. BASIC MODEL

' Suppose there are N defects in a given software product and that, as

a result of exercising the program, failures are observed to occur at epochs

e R

t(l) < t(Z) < ... . Each failure initiates a debugging action that perma-
nently eliminates the error causing the failure; for simplicity we assume
that the time to find and fix the error is negligible, or, what is the same

thing, we measure only the duration of time while running the program. If

ERRRAARE. WA

we then assume:
(a) The overall failure rate of the program, p(t) hnurs_l » between
. -1
t(i) and t(1+1) » is a constant equal to (N-i)@# hours s
(i=0,1, 2, ... N~1 ; t(O) = Q) , where @ is a wunit failure
. rate; and,
(b) given N and @ , the inter-failure times, T, = t(i) - t(i+1)
(i=0,1, ... N-1) , are statistically independent;
then it follows that the interfailure times have a state-dependent exponential

distribution of the form:
Pr{i’i > 1)} = exp [~ @(N-i+1)T] . (2.1)

The resulting point process, a typical realization of which is shown
in Figure 1, is a pure-death continuous-time Markov process. (The total
failure rate is a random variable not only because of the random locations
of the failure epochs but also because @ and N can be considered as
random quantities.)

This process can also be viewed from a competing~risks point of view,
in which each error has an independent probability, @ dt , of causing a
failure in (t, t + dt) . The individual "lifetimes" until an error is un-
covered, {ti ; (1=1, 2, ... N)} are then mutually independent and exponen-

tially distributed with parameter @ . Our assumptions above then mean that

"-- '.- '-o « ".- .‘t '.\- » .l..)
[T S Y. W W S Sl W S W, |
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all N defects are considered to be "on test" simultaneously until failure.
After an interval (0,t] , we will observe that a certain random number,
n(t) = n(t) , of them will have failed with observed lifetimes {tl, Eys ooes

tn(t)} » and N - n(t) of them will still be "a failure waiting to occur."

Since the probability is Q = exp(-#t) that a bug will not surface in (0,t},

and P = 1-Q that it will, it follows that the distribution of n(t) , given

N and @ , is Binomial (N,P):

Pr{n(t)

n} = (2 ) (l_e_¢t)n e—Q(N_n) . (n = 0, 1, vees N) (2.2)

with moments:

Etn(t)} = N(-e 0%y & ViR(e)} = Ne PE(1-e70t) . (2.3)

(These results also follow from the solution of the birth-and-death equations

of the Markov process description.)

(2]

p(t)
NG
(N-1)0 -—_—
(N-2)0 —
Py, - - o
20 - —
0 >—
* —— ¥\~ = {
t0)=0 ty Y@ e t(N-1) t)
|+ 1'1 ->|<- 1-2 ->|+- 13 -)l— - - - - -‘4——- TN ——»I

Figure 1. Typical realization of overall failure rate over time




From (2.2) we can in principle find the distribution of p(t) at any

t ; in particular, the mean failure rate is the function
= - _ -@t
E{o(t)} = (N-n(t))P = NP e (2.4)

1f both @ and N are known, and it is this form which suggests defect
identification and removal are very much like reliability growth models,
a point already made by early authors.
However, the software reliability problem is different in the following
senses:
(a) 6 , which reflects boith the rate at which certain portions of
the program are exercised as well as the probability that a
certain bug will cause a failure to occur (plus possibly the
probability that an error will be recognized by the operator),
is usually unknown a priori and has to be estimated from past
debugging experience and from the failure data of this experiment;
(b) N » the total number of defects in the program, is always unknown
a priori;
(¢) Since all failures will ultimately be found, the estimation
problem of primary interest after a testing interval of t
hours is the prediction of the distribution of unfound errors,
ﬁo(t) = N-n(t) ; other possible measures of interest are esti-
mators of the local failure rate, E(t) , and of the remaining

time until total debugging, twy " t .

By casting this problem in a Bayesian framework, similar to L-V and M-S, we
will see that these distributions can be found quite easily. In common with
M-S, we shall make the reasonable assumption that N is Poisson distributed,

with parameter A hour.1 . Since this only gives a one-parameter family,

and since it is rare that A would be known a priori, we shall enrich this

B
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assumption by additionally assuming that A 1is a random quantity with a
Gamma prior; this is equivalent to assuming that ﬁ is a priori from a
Pascal (Negative Binomial) density, and permits incorporating large variances

in our prior estimates. In common with L-V and M-S, we also assume that @

is an independent random quantity, also Gamma distributed.
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3. FULL-DATA PRIORS AND POSTERIORS
In the usual case, the full history of all failure times will be
recorded, so that the data from an experiment run for t hours will be
Ut = {tl, Los vees T3 n} where by n we mean n(t) . For convenience,
we also switch to the unordered individual lifetimes of the n out of N
failures that appear in (0,t] . It then follows from first principles
that, given N and @ , the data likelihood is:
. n _ N-n _
P(Dt | N, @) = ——-—(Nljr.l)' T Pe ati T e dc
T \i=1 j=1
_ N n -@7T
= - @ e . (3.1)
where
n
T=T@,N) = ] t,+ (N-n)t (3.2)
t A

is the familiar total-time-on-test statistic for N items tested in parallel.
Note that (3.1) remains the likelihood for any non-informative stopping rule;
for example, instead of stopping after t hours, we could also stop after

th

the n failure, giving T=t (see M-S). Thus, (n,T) are the usual

(n)
sufficient statistics for @ when N s known.

However, in our case, N 1is unknown and is Poisson (A) a priori, so
that:

XN e—x
POLN | A,0) =p®@, | N, —5y

Marginalizing out the values of N > n , we get the final data likelihood,

given the parameters A and @ :

CaN e e e . N e
AR N . .
TR WPS- VSIS VPGPV VS A PPN Wi oy W
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_ O e e
p(@, | 2,0) = = . (3.3)
where
Doe- 1 )
s =5() = t, = t.y = L (n-itl)t, (3.4)
T Rt RS | *

is the total-time-on-test for the discovered errors. Thus, (n,S) are
sufficient for (X, @)

It remains to choose appropriate priors for A and 6 . Suppose
¢ =0 was, in fact, fixed and known and @t was large; then it can be seen
from (3.3) that the Gamma density:
b2 Aa-l e—bA

~T@ (3.5)

p(x) = Ga(x | a,b) =

would be a convenient choice for the prior on Y , since this combination
would be closed under sampling, that is, the posterior-to-data density,

p(» | D) , would also be Gamma, with revised parameters:
a'=atm § b' = b+l . (3.6)

As mentioned previously, this is tantamount to assuming that N 1is Pascal

(a, (b+1)-l) distributed a priori; the hyperparameters a and b can be

estimated from E{&} (a/b) and V{ﬁ} = (a(b+1)/b2) . (See (4.2) below.)

Conversely, 1if A =\ were fixed and all values of 6 = e-ot were
assumed neglig.ble compared to unity, then we see that the convenient prior

for @ would also be a Gamma density, say Ga(d I c,d) , so that, posterior-

to-the-data, p(® | D) would still be Gamma, but with updated hyperparamecters:

¢c'=c+n ; d'=d+ 85 . (3.7)

s - . Tl e el e tTee el

e . St e A EIC L U P C . R o R T N s R S ‘v "m
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The original values of these hyperparameters could be estimated from the
relationships E{é} = (c/d) and VI{g} = (c/dz) , or from forming some opinion
about the time for a single error to be found, which has moments E{ﬁ-l} =
@/(c-1)) and V{BTY) = @%/(c-1)%(c-2)) .

Now, unfortunately, our likelihood (3.3) is more complicated, and the
coupling term, exp{ke_Gt} = exp{AQ} , means that, posterior-to-the-data,

p(n, @ | Dt) will have the two parameters dependent, even though they were

a priori independent. Nevertheless, the assumption of independent Gamma priors

still turns out to be the most effective one for analytic simplicity, and so,

using Bayes' law, we write the joint posterior on the parameters as:
AQ ] 1 A )
p(h, 8| D) =e Ga(r | a', b'") Ga(® | ¢', d") (3.8)

where the interaction is clearly seen. Of course, as t + » , our posterior
opinions about A and é will become independent again, since Q > 0 .

By expanding the coupling term in powers of (AQ) , one can write (3.8)
in closed form as the ratio of two infinite series, as in Jewell [4].

We shall not pursue this here, but pass to the more interesting problem of

predicting the unfound errors.
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}§: 4, PRIOR AND POSTERIOR PREDICTION OF UNFOUND ERRORS
:;{ It is well known that the partition of a Poisson-distributed random
integer N by means of a Binomial process leads to two independent Poisson

‘-. -

L processes. It follows that the number of undetected errors at time t ,

4¥ ﬁo(t) = N - n(t) is Poisson ‘\Q) , that is:

- n

l" (o} -AQ

-, _ -0t

N P, |2, 8, 0 =R (=P (4.1)
> o

Y
.l

- If @ were fixed, we could use (3.5) to show that our prior prediction of

}" ﬁo(t) would be the marginal density:

-~

s p(n_| 8,t) = f(ang) ( b ) (2 )n° (4.2)
. o ? T'(a) no! b+HQ b+HQ ’

)

L which is Negative Binomial or Pascal (a,Q/(bHQ)) . Thus, before debugging,
oy our prior opinion about the errors that will remain after time t would be
o - -

{3 that E{no | 8,t} = (aQ/b) and V{no | 8,t} = (aQ/b) (1+(Q/b)) , assuming

o

“b always that @ is known. In particular, as t-+0, Q + 1, and we obtain

) -

- the Pascal prior for N previously mentioned.
tfﬂ If we attempt to use the Gamma (c,d) prior on @ with (4.2) to get

1; p(no | t) , the unconditional prior prediction of remaining errors at t ,
i;' we again run into analytic difficulties and must settle for an infinite series.
:&: However, the moments are no difficulty, whence we find, for example, the prior
:E: expected number of errors remaining at time ¢t :

9.

:?? ~ ~ = a a\¢

_‘v.. = = — — .
e Fin | t} = E{N Q} (b) (d_,,t) ’ (4.3)
Ao

oy
. and the prior expected failure rate at time ¢t :
o ~ ~ a c d¢
EG (D)) = Eln_ 8) = | 2) —7 . (4.4)
"\1- (d+t)
o3

e

.“:,'

A d

':";-', .1 ! . -_‘--. .-.' -’—'\.-\:"' -1‘..'“ T .Q.-i..-“..--' '~'_‘."-'\~" IRCARATRES NS q\- .‘.\.h“‘ LRSI N SNTATN
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Since p(A, @ | Dt) and p(no | t) can only be found in terms of

infinite series, it might seem hopeless to attempt to compute the predictive
distribution of ﬁo » given the data. However, comparison of (3.3) and (4.1)

reveals that there is a fortuitous cancellation of the coupling term when

using

p(n, | D) =ffp(no | A, 8, t) p(r, @ | vt) dr do ,

and we find easily the predictive density:

T(a'+n) '

(o
=K —— 0 o [___d'
p(no I vt) - K r(al)no! (b ) (o) (d'+tn°) . (4.5)

where only the normalizing constant, K = p(0 | Dt) s, requires numerical

computation.

In fact, (4.5) can be simply computed by setting p(0 | Dt) = 1 , using

the recursion:

1 v c

P(n°+1|Dt)=(a +n°)(d+tno )( 1 ) (4.6)

] 1

p(n ID) b d-i-t:+t:no no+1
o t

and then renormalizing. Although (4.5) is not a standard density, we see

from (4.6) that, as n, gets large, the term involving c¢' and d' can be

ignored, so the tail of p(no | Dt) is approximately Pascal (a+1, (bi-l)-l) .

Unfortunately, in contrast to (4.3), the moments of (4.5) must now be

found numerically.




5. MLE AND PREDICTIVE MODE K

In attempting to get a point estimator from the data, the usual idea
is to find the MLEs (N,@#) from (3.1). M-S have reported that N can be
unstable for small amounts of data, and might not even exist. In our extended

~ A

model (3.3) one can find the MLEs (X,8) from:

-0t S + A te-ﬁt .

>> |
[}
[
!
(1]
.o

| -SN 1]

>

which gives for @ alone:

%‘%‘*‘—,—E— R (5.1)
L/ Pt _

and then ; by substitution, and finally ;o = A - n . These estimators
should exist for all values of t > S(Dt)/n(t) ,» but one can, in fact, show
that (5.1) gives positive a only for t 1larger than twice this critical
ratio! In fact, solutions for the smallest permitted values of t are
very unstable numerically and cannot easily be found. About the only simple
thing that can be said is that, for t 1large, 8 approaches n(t)/S(Ut) . k
which is obvious. So much for MLEs. ‘
However, modes also give useful point estimators, if one is needed.
We find from the Pascal marginal density that the prior mode n =N is

(o}

the smallest integer not less than the solution to:

%
a+ N

%*
N +1=¢%71 (5.2)

Ea o

From (4.6), it follows that the posterior-to-data predictive mode is the

g integer not less than the solution to:
-’
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(o]
a' + n: a' + tng
. * =
ng*t1 b+ 1 & Ft+emE| (5.3)

which can be found easily through iteration. Through arguments similar to

those in Jewell [4], one can show that the first term in (5.3) is an updated

estimate N' of N , and the second term is an estimate Q' of Q = e-ﬂt .

so that (5.3) reads simply n: =~ N'Q' . Limiting cases of the hyperparameters

when the priors are diffuse or degenerate give various intuitive versions of

(5.3). (See [4].)

Note that (5.3) exists for qll t > 0 and all data. However, for small

t, n: may be substantially less than E{ﬁo | Dt} because of the long tails

of the distribution.

6. COMPARISON WITH MEINHOLD AND SINGPURWALLA'S MODEL

Apart from the generalized stopping rule, our main difference with M-S
is that they assume A 1is known, rather than being a random quantity that
is Gamma (a,b), a priori. The effect of this can be most easily seen in the
term (a' + no)/b' in (4.6) and the similar term in (5.3). The M-S model
can be obtained by setting a = bA , and letting b + = ; then these terms

are replaced simply by A , and no longer depend upon the observations or

Y

R
»
£t

the values of n, . At the other extreme, our model can represent diffuse

price knowledge about A by letting b+ 0 (V{X} » =) ; then these terms

e

:"‘}."‘-

*
become simply n +n (or n + n) , and are essentially independent of the

L)
-

4
\

prior. In the general use of the Gamma prior, we obtain a "credibility"

mixture between E{X} and n_ + n for this term.
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[~ 7. EXAMPLE

1

}“ Suppose we set a =1 and b = 0.1 , which corresponds to:

i\,

¥ E{X} = E{N} = 10 ; V{X} =100 ; V{N} = 110 ;

and then set ¢ =5 and d 80 , that is:

E{d} = 0.0625 V{#} = 0.000781 E(@ 1 =20 5 vig™lr = 133.33 .

o Picking N =20 and @ = 0.025 , one realization of ordered failure times

f}, [t(i)(k =1, 2, ..., 20)] gave:

3.282 3.889 5.900 5.903 5.996 6.055 9.829 10.40 10.95 11.90

{T? 11.96 14.40 19.98 20.23 20.38 22.91 30.05 35.35 35.69 59.44

Figure 2 shows the integral solutions n: and N* = n(t) + n: to the
. predictive mode equation (5.3), versus t . For t < t(l) , both n: and N*
gﬁ are zero because no failures have occurred, even though our prior expectation
i; is F{N} = 10 . Thereafter, the curve jumps upward at each failure epoch,
)‘ followed by integer decreases as t increases without further events (Figure 2
Eée shows only a straight-line approximation to the true behavior).

Figure 3 shows the exact predictive means E{ﬁo | Dt} and E{N | Dt}

for t = 0(5)80; these were computed numerically from the full distributions.

W

In general, these behave more smoothly than the posterior modes and seem to

;ﬁ converge towards the true N for lower values of t . Further, for small ¢t
éi they are influenced by the prior, rather than starting at zero. (Figure 3

i;: shows only a straight-line approximation to the true behavior.)

.§S However, the main result is not these point estimators, but the fact that
2

'y

the full predictive density can be obtained from (4.6). Figure 2 shows the

(Pascal) density obtained at the start of the experiment (t = 0); for our
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parameters the initial mode is zero. After a couple of errors are found, the

i mode shifts to a positive number and the variance begins to reduce, giving

- curves similar to Figure 5, where t = 10 and n(10) = 7 . Thereafter, the

; curve essentially remains unimodal, with nodes and means given by Figures 2

. and 3, with the variance decreasing almost continuously. After about t = 46,
o n(46) = 19 , the predictive density again has its mode at the origin, with
mass on only a few values of n; Figure 6 shows a typical density, at t = 70,
10 time units after the last error has actually been found.

.- In this way, we see how easily one obtains full predictive information

about undetected errors for use in decision problems or in making performance

guarantees.

2 = CORL S DR
AL RO

.ID
efetats

l.l

R LI |
[P

ALY

-
CAR]
.«

R L L
PN
.

0 .




o X,

Teazdjuf Suylsal sSNSIdA ¢ N pPue U ‘sapow dATIdTpaad jJo 10Taeyaq 23euTxoiddy ‘gz 2an8dyg iy

* ¥ \lk

16

< 08 Q9 qv a2 o

»
~ e
-

YRt
»

~

(o]
[=]
14

<

X

L
NS

AR

RN
B

“ e *

-

e

N
-
—

5

&

— vV 0

Caf. ¢
f’
L)

‘ih
&

Ld

o I{l.'_'-rsf‘

prets

....... e e - . P —pane PPN N . R -
-VE ......‘.-......l‘ﬁﬁrﬂ.ﬁvﬂ-ﬂu-\ﬂfj—.l.-..-..o....\-.-....-l.. AP -4;!. ERRC R ~..‘-,. DR AR I o S R e e R < N e A P e R i .

;




T8A233UT JuTIS3] SNSIIA SUPAW IATIDIpaad JO 107aryaq ajewixoiddy g 2anl1g

08 09 ov 02




oy
‘p
o 5

-’I

n

40

30

20

10

C AT
o

A AR
{niat (ﬁjx

r )
-
N

Vet et

¢:ﬂ'4’i' oty N

t

Predictive density of undetected errors at

Figure 4.

by

av 1] - K
fy \-‘\_.,‘\\

LAY

kﬁ\ "



(b “aii s ap-a bres svun aren aran K It el s Rl ve it ad

>

t =10

30
Predictive density of undetected errors at

|II||L|||'I[_IIIA...A,‘ no
20

Figure 5.




0/=3 3B S10113 PalIdaIapun Jo AITSUIP IAFIDIPaigd °y 2inBT4

-

e iy

L= gt o

Loal gpulated

WS

-
L NS

W W TR

L " ol e g™ it * o

b N
a



fomin onat tae ot wa st uaat dad ek rest i Smar NI eadCindt maic At

References

1}

(2]

[3]

[4]

[51

(6]

(7]

(8]

[91]

(10]

(11]

(12]

A. Goel and K. Okumoto, "Time-Dependent Error-Detection Rate Model for
Software Reliability and Other Performance Measures,' IEEE Transactions
on Reliability, Vol. R-28, No. 3, pp. 206-11, 1979.

Z. Jelinski and P. B. Moranda, '"Software Reliability Research," in
Statistical Computer Performance Evaluation (W. Freiberger, ed.),
Academic Press, NY, pp. 485-502, 1972.

W. S. Jewell, "A General Framework for Learning Curve Reliability Growth
Models," Operations Research, Vol. 32, No. 3, pp. 547-58, May-June 1984,

W. S. Jewell, "Bayesian Estimation of Undetected Errors,' ORC 83-11,
Operations Research Center, University of California, Berkeley; to appear,
Proceedings, 2nd International Meeting on Bayesian Statistics, Valencia,
Spain, 6-10 September 1983,

W. Kremer, "Birth-Death and Bug Counting,'" IEEE Transactions on Relia-
bility, Vol. R-32, No. 1, pp. 37-47, 1983.

N. Langburg and N. D. Singpurwalla, "Unification of Some Software Relia-
bility Models via the Bayesian Approach," SIAM Journal of Scientific and
Statistical Computing, Vol. 6, No. 3, 1985.

LY

B. Littlewood and J. Verall, "A Bayesian Reliability Growth Model for
Computer Software,"”" Record of the IEEE Symposium on Computer Software
Reliability, IEEE, NY, pp. 70-76, 1973.

B. Littlewood and J. Verall, (same title as [7]), Journal Royal Statisti-
cal Society, Vol. 22, No. 3, pp. 332-46, 1973.

B. Littlewood, "How to Measure Software Reliability and How Not To,"
IEEE Transactions on Reliability, Vol. R-28, No. 2, pp. 103-10, 1979.

B. Littlewood, "Stochastic Reliability-Growth: A Model for Fault-Removal
in Computer-Programs and Hardware-Designs,'" IEEE Transactions on Relia-
bility, Vol. R-30, No. 4, pp. 313-20, 1981.

R. J. Meinhold and N. D. Singpurwalla, ''Bayesian Analysis of a Commonly
Used Model for Describing Software Failures,'" The Statistician, Vol. 32,
pp. 168-73, 1983.

P. B. Moranda, "An Error Detection Model for Application During Software
Development,'" IEEE Transactions on Reliability, Vol. R-30, No. 4,

pp. 309-13, 1981.




i adl Sl el i i B g el il A

TN

e




